Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 198: 115930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101059

RESUMO

This study assessed pollution levels, ecological and health risk, and spatial distribution of eight heavy metals in sediments of Big Giftun and Abu Minqar Islands, Red Sea, Egypt. Iron (Fe) and manganese (Mn) had the highest contents in both island sediments, while cobalt (Co) in Big Giftun and cadmium (Cd) in Abu Mingar had the lowest values. The obtained PCA data exhibited positively significant loadings of Cd, Co, copper (Cu), nickel (Ni), and zinc (Zn) with 51.03 % of data variance in Big Giftun, and lead (Pb), Cu, Mn, Ni, Zn, and Fe (37.7 %) in Abu Minqar sediments. The contamination factor (CF) showed low contamination for all metals, except cadmium; Cd (moderate). The geo-accumulation index (Igeo) values showed uncontaminated (Cd, Co), moderately (Cu), extremely contaminated (Fe, Mn) (Igeo > 5) in Big Giftun, and uncontaminated (Cd), moderately to strongly contaminated (Cu, Ni), and extremely contaminated (Fe, Mn, and Zn) in Abu Minqar sediments. The pollution load index (PLI) values indicated baseline level of contamination (PLI <1), and degree of contamination (DC) indicated low degree of contamination (DC < n) in all sediments. Nemerow pollution index (NPI) showed unpolluted sediments in Abu Minqar (NPI ≤1) and slight pollution (1 < NPI ≤2) in Big Giftun. Cd showed moderate potential ecological risk (40 ≤ Eri < 80) in Big Giftun sediments. Potential ecological risk index (PERI) indicated low risk sediments (PERI <150). Mean effects range median quotient (MERMQ) indicated low-priority risk of toxicity (MERMQ ≤0.1), and toxic risk index (TRI) showed no toxic risk in all sediments (TRI <5). The modified hazard quotient (mHQ) indicated very low severity of contamination (mHQ <0.5). The hazard quotient (HQ) levels of all metals were below the safe value (HQ <1). The hazard index (HI) levels indicated that no chronic risks occur (HI <1). The total cancer risk (TCR) for all metals were below the safe level (1 × 10-4) of the United States Environmental Protection Agency (U.S. EPA) guidelines.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Oceano Índico , Cádmio , Egito , Sedimentos Geológicos , Medição de Risco , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise , Manganês , Zinco , Cobalto , Níquel
2.
PLoS One ; 18(8): e0287422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535632

RESUMO

The utilization of phosphorite deposits as an industrial resource is of paramount importance, and its sustainability largely depends on ensuring safe and responsible practices. This study aims to evaluate the suitability of phosphorite deposits for industrial applications such as the production of phosphoric acid and phosphatic fertilizers. To achieve this goal, the study meticulously examines the geochemical characteristics of the deposits, investigates the distribution of natural Radioactivity within them, and assesses the potential radiological risk associated with their use. The phosphorites are massive and collected from different beds within the Duwi Formation at the Hamadat mining area. They are grain-supported and composed of phosphatic pellets, bioclasts (bones), non-phosphatic minerals, and cement. Geochemically, phosphorites contain high concentrations of P2O5 (23.59-28.36 wt.%) and CaO (40.85-44.35 wt.%), with low amounts of Al2O3 (0.23-0.51 wt.%), TiO2 (0.01-0.03 wt.%), Fe2O3 (1.14-2.28 wt.%), Na2O (0.37-1.19 wt.%), K2O (0.03-0.12 wt.%), and MnO (0.08-0.18 wt.%), suggesting the low contribution of the detrital material during their deposition. Moreover, they belong to contain enhanced U concentration (55-128 ppm). They are also enriched with Sr, Ba, Cr, V, and Zn and depleted in Th, Zr, and Rb, which strongly supports the low detrital input during the formation of the Hamadat phosphorites. The high Radioactivity of the studied phosphorites is probably due to the widespread occurrence of phosphatic components (e.g., apatite) that accommodate U in high concentrations. Gamma spectrometry based on NaI (Tl) crystal 3×3 has been used to measure occurring radionuclides in the phosphorite samples. The results indicate that the radioactive concentrations' average values of 226Ra, 232Th, and 40K are 184.18±9.19, 125.82±6.29, and 63.82±3.19 Bq Kg-1, respectively. Additionally, evaluations have been made of the radiological hazards. The calculated risk indicators exceeded the recommended national and world averages. The data obtained will serve as a reference for follow-up studies to evaluate the effectiveness of the Radioactivity of phosphatic materials collected from the Hamdat mine area.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Tório/análise , Radioisótopos de Potássio/análise , Monitoramento de Radiação/métodos , Compostos Férricos/análise
3.
Mar Pollut Bull ; 194(Pt B): 115367, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567130

RESUMO

The objective of this study is to assess the natural resources and radiological risks of Wadi El Gemal Island by examining its topography, mineralogy, geochemistry, and radioactive distributions. This island, which is situated at the outlet of Wadi El Gemal in Egypt's southeastern Desert, has a unique shape resembling a dolphin based on Landsat imagery. It's a part of the Wadi El Gemal-Hamata Protectorate and is notable for its diverse environmental, geological, economic, and archeological features, including recent reefs, sandy deposits, Quaternary carbonate sediments, and mangroves. The main natural resources on the island are fauna, mangrove forests, and flora. Samples collected from the island were analyzed using a NaI detector to measure the concentrations of radionuclides such as 238U, 232Th, 226Ra, and 40K, which were found to be within acceptable levels according to UNSCAR guidelines. The radionuclide 238U, 232Th, 226Ra, and 40K activity concentrations of the collected samples were 32.55 ± 9, 12.63 ± 4, 12.49 ± 4, and 325 ± 34 Bq/kg, respectively. Regarding radiological hazard indices, the values of absorbed gamma dose rate (36.06 ± 5.42 nGy/h), radium equivalent activity (73.88 ± 14.4 Bq/kg), annual effective dose indoor (0.18 ± 0.03 mSv/y) and outdoor (0.04 ± 0.01 mSv/y), internal (0.29 ± 0.05) and external (0.2 ± 0.03) indices, and excess lifetime cancer index (0.15 ± 0.05 × 10-3).This is suggest that there is no significant risk associated with these sediments.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Radioisótopos/análise , Rádio (Elemento)/análise , Recursos Naturais , Tório/análise , Poluentes Radioativos do Solo/análise , Radioisótopos de Potássio/análise , Espectrometria gama
4.
Sci Rep ; 13(1): 11497, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460601

RESUMO

Emerald and other beryls represent a family of the most valuable gemstone around the world and particularly in Egypt. Beryllium (Be) contents in beryl-bearing bedrocks in south Sinai (Wadi Ghazala and Wadi Sedri), and in central and south Eastern Desert of Egypt (Igla area, Zabara-Um Addebaa belt, Homret Akarem, and Homret Mukpid) were investigated in this study. The environmental risk levels of Be, associated major ions, and heavy metals in groundwater nearby to beryl-bearing mineralization were also evaluated. Results showed that Be contents ranged from 1 to 374 ppm in beryl-bearing bedrocks, while in nearby groundwater, Be content has a range of 0.0001-0.00044 mg/L with an average of 0.00032 mg/L, which is within the permissible levels and below (0.004) the U.S. EPA maximum contaminant level (MCL). Most levels of heavy metals (e.g., Be, B, Ni, V, Fe, and Al) in the investigated groundwater of central and south Eastern Desert and south Sinai are within the permissible levels and below their corresponding U.S. EPA MCLs. This study also investigated the radiological risk of natural radionuclides distributed in beryl-bearing bedrocks in the study area using gamma spectrometry; Sodium Iodide [NaI(Tl)] scintillation detector. Among the estimated mean 238U, 232Th, and 226Ra activity concentrations of the studied beryl-bearing rocks, Homret Mukpid (79, 87.15, 60.26 Bq kg-1) and Homret Akarem (111.6, 51.17, 85.1 Bq kg-1) contain the highest values. This may be attributed to their highly fractionated granitic rocks that host uranium and thorium reservoir minerals such as zircon, allanite, and monazite. The estimated data of multi-radiological parameters such as absorbed gamma dose, outdoor and indoor annual effective dose, radium equivalent activity, internal and external indices, index of excess cancer, and effective dose to human organs reflecting no significant impacts from the emitted natural gamma radiation.

5.
Sci Rep ; 13(1): 9108, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277430

RESUMO

The current contribution conducted new geochemical, remote sensing integrated with gravity detailed studies of talc deposits to identify the talc protolith as well as its extension, depth, and structures. There are two examined areas, distributed from north to south, Atshan and Darhib and both belong to the southern sector of the Egyptian Eastern Desert. They occur as individual lenses or pocket bodies in ultramafic-metavolcanics following NNW-SSE and E-W shear zones. Geochemically, among the investigated talc, Atshan samples have high contents of SiO2 (av. 60.73 wt.%), and higher concentrations of transition elements such as Co (av. 53.92 ppm), Cr (781 ppm), Ni (av. 1303.6 ppm), V (av. 16.67 ppm), and Zn (av. 55.7 ppm). Notably, the examined talc deposits contain low contents of CaO (av. 0.32 wt.%), TiO2 (av. 0.04 wt.%), SiO2/MgO (av. 2.15), and Al2O3 (av. 0.72 wt.%), which is comparable with ophiolitic peridotite and forearc setting. False color composite (FCC), principal component analysis (PCA), minimum noise fraction (MNF), and band ratio (BR) have been used to distinguish talc deposits in the investigated areas. Two new proposed band ratios were created to separate talc deposits. FCC band ratios (2/4, 4/7, 6/5) and (4 + 3/5, 5/7, 2 + 1/3) have been derived to focus on talc deposits in two case studies, Atshan and Darhib areas. The application of regional, residual, horizontal gradient (HG), and analytical signal (AS) techniques to gravity data are used in interpreting the structural directions of the study area. The analysis of this technique displays several notable faults trending in NW-SE, NE-SW, NNW-SSE, and E-W directions. Two techniques of gravity depth calculation were applied in the study areas, namely source parameter image (SPI), and Euler deconvolution (EU). The analysis of these techniques reflects that the depth of subsurface sources ranges between 383 and 3560 m. Talc deposits may be attributed to greenschist facies metamorphism or to a magmatic solution that is (associated with granitic intrusions) interacted with the surrounding volcanic rocks forming metasomatic minerals.

6.
Sci Rep ; 13(1): 10320, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365229

RESUMO

The present study aims to explain the geochemical and mineralogical details of the granitic rock types in Gabal EL-Faliq area, South Eastern Desert of Egypt, in relation to geotechnical engineering and their suitability as dimension stones. The objective of the current research was achieved through two steps; the first step involved geological studies such as the petrographic, geochemical, and mineralogical investigations. The second and applicable step involved the geotechnical assessment of the studied rocks by measuring their engineering properties such as physical, mechanical, and thermal expansion properties. The petrographic investigation revealed that the studied granitic rocks are divided into two main classes: (1) gneissose granites (Biotite-Perthite) of medium to fine-grained size and (2) alkali-feldspar granites of coarse to medium-grained size. Mineralogically, the studied rocks are composed mainly of albite, orthoclase and quartz in varying proportions, along with some accessory minerals such as apatite and rutile in addition to some minor quantities of iron-group minerals such as hematite and ilmenite. The engineering properties showed that the maximum water absorption and apparent porosity values are 0.34% and 0.77%, respectively, while the minimum bulk density is 2604.03 kg/m3. The compressive strength ranges from 999.68 to 2469.10 kg/cm2, while the abrasion resistance varies from 29.67 to 54.64 Ha. The increase in albite content led to an increase in water absorption while a decrease in bulk density and compressive strength. The increase in the grain size led to an increase in apparent porosity and a decrease in mechanical properties. A Great variation in the expansion coefficient as well as the length change, occurs under changes in temperature, mineral composition, and physical properties. The increase in heating temperatures caused an insignificant increase in linear thermal expansion with a maximum value of 0.0385% at 100 °C. These results indicated the suitability of the studied granites as dimension stones for use in indoor and outdoor decorative purposes (cladding/paving) under variable temperature conditions.

7.
Mar Pollut Bull ; 192: 115096, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271076

RESUMO

The concentrations of heavy metals in the surface waters and sediments of Bitter Lake were investigated to assess the level, distribution, and source of pollution and the associated ecological and human health risks. The ecological indices of the lake water indicate low contamination degrees by heavy metals. A dermal exposure-based health risk evaluation revealed no carcinogenic or non-carcinogenic impact on human health. The contamination factor (CF) for Cu, Ni, Pb, Mn, Fe, and Zn (CF < 1) indicate low contamination levels, while Cd reaches very high contamination in most sediment sites (CF ranges from 6.2 to 72.4). Furthermore, the potential ecological risk factor (Eri) and modified hazard quotient (mHQ) indicate low ecological risk for all metals except Cd, revealing high to very high-level ecological risk in most sites (Eri ranges from 185 to 2173 and mHQ from 1.8 to 6.3). This emphasizes the urgency of prompt actions to improve the environment in Bitter Lake.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Lagos , Egito , Cádmio , Sedimentos Geológicos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-36078432

RESUMO

The current contribution goal is to measure the distribution of the radionuclide within the exposed rock units of southwestern Sinai, Seih-Sidri area, and assess the radiological risk. Gneisses, older granites, younger gabbro, younger granites, and post granitic dikes (pegmatites) are the main rock units copout in the target area. Radioactivity, as well as radiological implications, were investigated for forty-three samples from gneisses (seven hornblende biotite gneiss and seven biotite gneiss), older granites (fourteen samples), and younger granites (fifteen samples of syenogranites) using NaI (Tl) scintillation detector. External and internal hazard index (Hex, Hin), internal and external level indices (Iα, Iγ), absorbed dose rates in the air (D), the annual effective dose equivalent (AED), radium equivalent activity (Raeq), annual gonadal dose (AGDE), excess lifetime cancer risk (ELCR), and the value of Upper Continental Core 232Th/238U mass fractions were determined from the obtained values of 238U, 232Th and 40K for the examined rocks of Seih-Sidri area. The average 238U mg/kg in hornblende biotite gneiss and biotite gneiss, older granites, and syenogranites is 2.3, 2.1, 2.7, and 8.4 mg/kg, respectively, reflecting a relatively higher concentration of uranium content in syenogranites. The results suggest that using these materials may pose risks to one's radiological health.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Urânio , Radioisótopos de Potássio/análise , Monitoramento de Radiação/métodos , Radioisótopos/análise , Saúde Radiológica , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise , Tório/análise , Urânio/análise
9.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744128

RESUMO

Natural radioactivity, radiological hazard, and petrological studies of Homrit Waggat granitic rocks, Central Eastern Desert, Egypt were performed in order to assess their suitability as ornamental stone. On the basis of mineralogical and geochemical compositions, Homrit Waggat granitic rocks can be subdivided into two subclasses. The first class comprises granodiorite and tonalite (I-type) and is ascribed to volcanic arc, whereas the second one includes alkali-feldspar granite, syenogranite, and albitized granite with high-K calc alkaline character, which is related to post-orogenic granites. 238U, 226Ra, 232Th, and 40K activities of natural radionuclides occurring in the examined rocks were measured radiometrically using sodium iodide detector. Furthermore, assessment of the hazard indices-such as: annual effective dose (AED) with mean values (0.11, 0.09, 0.07, 0.05, and 0.03, standard value = 0.07); gamma radiation index (Iγ) with mean values (0.6, 0.5, 0.4, 0.3, and 0.14, standard value = 0.5); internal (Hin) with mean values (0.6, 0.5, 0.4, 0.3, and 0.2, standard value = 1.0); external (Hex) index (0.5, 0.4, 0.3, 0.24, and 0.12, standard value = 1.0); absorbed gamma dose rate (D) with mean values (86.4, 75.9, 53.5, 43.6, and 20.8, standard value = 57); and radium equivalent activity (Raeq) with mean values (180, 154, 106.6, 90.1, and 42.7, standard value = 370)-were evaluated with the knowledge of the natural radionuclides. The result of these indices falls within the acceptable worldwide limits. Therefore, we suggest that these rocks are safe to be used in industrial applications.

10.
Materials (Basel) ; 15(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35329492

RESUMO

The aim of the present study is to link the thermal expansion, spectral reflectance, and physico-mechanical aspects of different types of commercial granitic rocks with their mineralogical and chemical composition. The granitic rock types were characterized using several analyses, including petrography, chemical, mineralogical, and thermo-gravimetrical analysis using XRF, XRD, and TG/DTG/DSC techniques. The rock types were subjected to several performance tests, such as tests of their thermal expansion, spectral reflectance, and physico-mechanical properties. The results revealed that quartz, albite, and potash feldspar with minor amounts of mica (biotite/muscovite/annite) are the main mineralogical constitutes, in addition to some alteration minerals, such as kaolinite, saussorite, and prehnite. The studied granitic rocks were classified as monzogranite/syenogranite of high K-calc-alkaline and peraluminous characters and are related to late- to post-collisional settings. The thermogravimetrical analysis revealed that the overall mass loss over the whole temperature range up to 978 °C did not exceed 3% of the initial weight for all studied rocks. The results of thermal expansion revealed that the maximum change in linear thermal expansion for all rock types did not exceed 0.015% of their initial lengths at an unusual air temperature of 50 °C. The spectral analysis revealed that iron and hydroxyl ions are the main spectral absorption features that appeared in the VIS-NIR and SWIR regions, in addition to the appearance of the common and distinctive absorption peaks of the main mineral composition. Furthermore, the spectral reflectance demonstrated that the granitic rock types of low iron oxide content achieved a high reflectivity percent in the VIS-NIR and SWIR spectral regions compared with those of high iron content. As a general trend, the granitic rock types of high iron content and/or lower quartz content exhibited a high performance regarding their physical and mechanical properties, such as water absorption, apparent porosity, bulk density, compressive strength, and abrasion resistance. The results of water absorption, density, strength, and abrasion resistance of the studied granitic rocks are in the range of 0.14-0.31%, 2582-2644 kg/m3, 77.85-222.75 MPa, and 26.27-55.91 Ha, respectively, conforming to the requirements of ornamental stones according to the ASTM standard.

11.
Materials (Basel) ; 14(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885445

RESUMO

Magmatic rocks represent one of the most significant rocks due to their abundance, durability and appearance; they can be used as ornamental stones in the construction of dwellings. The current study is concerned with the detailed petrography and natural radioactivity of seven magmatic rocks. All are commercial granitic rocks and are identified as black Aswan, Nero Aswan, white Halayeb, Karnak, Verdi, red Hurghada and red Aswan. Their respective mineralogical compositions are classified as porpheritic granodiorite, granodiorite, tonalite, monzogranite, syenogranite, monzogranite and syenogranite. A total of nineteen samples were prepared from these seven rock types in order to assess their suitability as ornamental stones. Concentrations of 226Ra, 232Th and 40K radionuclides were measured using NaI (Tl) scintillation gamma-ray spectrometry. Among the studied magmatic rocks, white Halayeb had the lowest average values of 226Ra (15.7 Bq/kg), 232Th (4.71 Bq/kg) and 40K (~292 Bq/kg), all below the UNSCEAR reported average world values or recommended reference limits. In contrast, the other granitic rocks have higher values than the recommended limit. Except for the absorbed dose rate, other radiological hazard parameters including radium equivalent activity, annual effective dose equivalent, external, and internal hazard indices reflect that the White Halyeb rocks are favorable for use as ornamental stone in the construction of luxurious and high-demand residential buildings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...